Números Enteros y Racionales


Números Enteros

Los números enteros son un conjunto de números que incluye a los números naturales distintos de cero (1, 2, 3, ...), los negativos de los números naturales (..., −3, −2, −1) y al cero, 0. Los enteros negativos, como −1 o −3 (se leen «menos uno», «menos tres», etc.), son menores que todos los enteros positivos (1, 2,...) y que el cero. Para resaltar la diferencia entre positivos y negativos, a veces también se escribe un signo «más» delante de los positivos: +1, +5, etc. Cuando no se le escribe signo al número se asume que es positivo.


El conjunto de todos los números enteros se representa por la letra \scriptstyle \mathbb{Z} = {..., −3, −2, −1, 0, +1, +2, +3,...}, que proviene del alemán Zahlen.


Los números enteros no tienen parte decimal. Por ejemplo:


−783 y 154 son números enteros


45,23 y −34/95 no son números enteros


Al igual que los números naturales, los números enteros pueden sumarse, restarse, multiplicarse y dividirse, de forma similar a los primeros. Sin embargo, en el caso de los enteros es necesario calcular también el signo del resultado.


Los números enteros extienden la utilidad de los números naturales para contar cosas. Pueden utilizarse para contabilizar pérdidas: si en un colegio entran 80 alumnos nuevos de primer curso un cierto año, pero hay 100 alumnos de último curso que pasaron a educación secundaria, en total habrá 100 − 80 = 20 alumnos menos; pero también puede decirse que dicho número ha aumentado en 80 − 100 = −20 alumnos.


También hay ciertas magnitudes, como la temperatura o la altura toman valores por debajo del cero. La altura del Everest es 8848 metros por encima del nivel del mar, y por el contrario, la orilla del Mar Muerto está 423 metros por debajo del nivel del mar; es decir, su altura se puede expresar como −423 m.

Números Racionales

En matemática, se llama número racional a todo número que puede representarse como el cociente de dos números enteros (más precisamente, un entero y un natural positivo) es decir, una fracción común a/b con numerador a y denominador b distinto de cero. El término «racional» alude a fracción o parte de un todo. El conjunto de los números racionales se denota por Q (o bien Q, en Blackboard bold) que deriva de «cociente» (Quotient en varios idiomas europeos). Este conjunto de números incluye a los números enteros (Z), y es un subconjunto de los números reales (R).
La escritura decimal de un número racional es, o bien un número decimal finito, o bien periódico. Esto es cierto no solo para números escritos en base 10 (sistema decimal), también lo es en base binaria, hexadecimal o cualquier otra base entera. Recíprocamente, todo número que admite una expansión finita o periódica (en cualquier base entera), es un número racional.
Un número real que no es racional, se llama número irracional; la expansión decimal de los números irracionales, a diferencia de los racionales, es infinita no-periódica.
En sentido estricto, número racional es el conjunto de todas las fracciones equivalentes a una dada; de todas ellas, se toma como representante canónico de dicho número racional a la fracción irreducible. Las fracciones equivalentes entre sí –número racional– son una clase de equivalencia, resultado de la aplicación de una relación de equivalencia sobre Z.



No hay comentarios:

Publicar un comentario